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Objective: Sulfur mustard (SM) is a potent alkylating agent that can induce severe cu-
taneous injury. Though much is known regarding the gross pathology of SM injury, the
molecular and cellular basis for this pathology is not well understood. General cellular
processes such as inflammation, DNA damage response, and apoptosis have been hypoth-
esized to be involved in SM injury. However, the specific molecules, signaling pathways,
and gene products involved in the pathogenesis of SM injury have not been elucidated.
This review discusses the molecular mechanisms observed in in vivo and in vitro models
of cutaneous SM injury. Methods: The historical literature on the clinical pathology of
SM-induced cutaneous injury is summarized, and recent work elucidating molecular sig-
naling pathways involved in SM toxicity is extensively reviewed. In addition, this review
focuses the discussion of SM-induced molecular mechanisms on those that have been
experimentally validated in models of SM injury. Results: Recent work has uncovered
potential roles for a number of signaling molecules. In particular, molecules in inflam-
matory signaling, DNA damage response, apoptosis signaling, and calcium signaling
have been implicated in SM injury. These include signaling molecules involved in in-
flammation (e.g. p38 MAP kinase), apoptosis (e.g. p53, NF-κB, caspases, Fas), and cell
stress responses (e.g. calcium, calmodulin). Conclusions: Many of the molecules and
mechanisms implicated in SM injury are now being experimentally validated. Critical
questions are proposed that remain to be answered to increase our understanding of SM
toxicity and accelerate the development of vesicant therapeutics.

Sulfur mustard (SM, bis[2-chloroethyl]sulfide) is a highly reactive bifunctional alky-
lating agent that exerts a local toxic effect on skin, mucous membranes, eyes, and the
respiratory tract.1 Several investigators have reported the signs and symptoms of the clini-
cal and experimental acute effects of SM cutaneous injury. These findings are thoroughly
reviewed by Papirmeister et al.2 and are summarized here. Clinical injury is characterized
by an initial asymptomatic latent period of 1 to 12 hours that precedes lesion development.
Low-dose SM exposure (vapor or liquid) produces a lesion that is mild and characterized
by erythema, itching, and sensitivity to touch. With higher doses of SM, erythema develops
more rapidly after latency, and is then followed by varying degrees of blistering and necrosis
depending on dose. Histological observations of skin lesions show that, at early times (3–12
hours) in the erythematous stage of lesion development, signs of cytotoxicity appear first
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in basal keratinocytes.3–6 As the injury progresses, degenerative changes occur throughout
the layers of the skin, but these changes are more prevalent in the basal keratinocytes of
the epidermis. Past 12 hours, basal cell degeneration becomes more widespread. Foci of
epidermal-dermal separation coalesce, leading to microscopic and then macroscopic blis-
ter formation,3,5 and inflammatory cell infiltrates can be observed in the epidermis and
dermis.3–8 Visible blister formation occurs 12 to 48 hours after exposure and is maximal
at 42 to 72 hours. The skin surface denudes between 6 and 9 days and scab formation
occurs.9,10 Healing of SM cutaneous injuries is generally much slower than for other types
of skin injury. Slow regeneration begins about a month after exposure and the healing
process completes in about 2 to 3 months.9,10

The clinical and histopathological aspects of SM cutaneous exposure have been well
studied, and, in fact, most of what we know in this regard has been complete since the mid-
1940s. Only in the last 20 years has technology emerged to enable the study of the molecular
and cellular response to SM. Given that the clinical presentation and histological findings
of SM cutaneous lesions implicate an inflammatory component to this injury, mediators of
inflammation were some of the earliest molecular signals investigated in SM injury. Several
studies using a variety of animal skin and cultured cell models have identified numerous
inflammatory mediators that are produced in response to SM exposure, including interleukin
(IL)-1α, IL-1β, IL-6, IL-8, granulocyte-monocyte colony-stimulating factor, GRO (growth
factor and chemokine), leukotriene B4, monocyte chemoattractant (activating) protein-1,
and tumor necrosis factor α (TNF-α).11–23 Many of the inflammatory mediators upregulated
in SM exposure have well-characterized roles in the inflammatory phase of other types
of dermal injury22 and likely perform similar functions in SM cutaneous injury. These
mediators may also have functions that are unique to SM injury, but thus far only Qabar
et al.17 have investigated this possibility. They showed that the expression of TNF-α altered
keratinocyte sensitivity to SM-induced cell death.17 This observation is important as it
suggests that limiting inflammation in SM exposure may limit injury. Anti-inflammatory
compounds have been evaluated in SM cutaneous injury in mice, but have been only partially
successful in reducing edema, epidermal necrosis, and subepidermal blistering.18,19 The
inflammatory response in SM injury has not been fully characterized, and it is possible that
inhibitors that more efficiently target critical mediators of the inflammatory response may
prove beneficial. For example, expression of some mediators has been shown to precede
erythema,11,12,23 and inhibiting these early events may attenuate the ensuing inflammatory
response and limit injury. While inflammation is an important cascade of events in SM
exposure that likely contributes to the observed injury, factors and events that are more
directly implicated in tissue damage remain to be elucidated as well.

The involvement of serine and matrix metalloproteases in SM injury has been studied
in the context of tissue injury downstream of the initial toxicity. Although SM alkylates nu-
merous physiologically relevant molecules in cells and tissues,24 SM-induced DNA damage
has been hypothesized to be the primary initiator of the cellular response that leads to the
observed clinical injury.25–30 Papirmeister et al.31 were the first to propose a mechanism
linking the initial SM-induced DNA damage and downstream protease activation resulting
in blister formation. In their model, SM-induced DNA damage results in poly(ADP-ribose)
polymerase (PARP) activation. Overactivation of PARP would lead to NAD+ depletion and
stimulation of the NADP+-dependent hexosemonophosphate shunt, and would result in en-
hanced synthesis and release of proteases (specifically plasmin). They proposed that these
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proteases could be responsible for the development of subepidermal blisters by separating
the basal cell layer from the basement membrane and allowing the accumulation of fluid
in the resulting space. Since that time, numerous studies in various in vitro and in vivo
systems have shown that increased protease expression and activity is associated with cuta-
neous SM injury.12,32–45 However, at this time, there are still no data demonstrating a causal
link between SM-induced DNA damage, protease release due to metabolic disruption, and
clinical injury. In addition, the pathways that regulate SM-induced protease expression and
activity have not been identified and remain to be elucidated.

Although numerous clinical and molecular observations of SM injury have been re-
ported, only a few studies have been able to establish a causative or direct relationship
between observed molecular events and specific aspects of SM-induced injury. More re-
cently though, experimental evidence reported by several investigators is beginning to define
roles for NF-κB, p53, p38, PARP, Fas, calcium, and calmodulin in the molecular mecha-
nisms of SM-induced cell death, inflammation, and injury. This review focuses on these
studies. Elucidating the molecular events following SM exposure is likely to identify the
mechanisms of SM injury and the major regulators of the cellular response to SM. Knowl-
edge of these regulators and their roles in the mechanisms of SM injury is necessary for the
rational development of SM therapeutics. The goal for any therapeutic for SM injury would
be not only to limit injury but also to do so without increasing survival of SM-exposed cells
in a way that increases the risk of tumor formation, as SM is a known carcinogen.46 An
understanding of the molecular mechanisms of SM-induced injury and cell death will be
necessary to develop therapeutics that are effective at minimizing the acute injury and do
not increase the risk of tumor formation.

SIGNALING PATHWAYS ACTIVATED IN SM EXPOSURE

NF-κB, p38, and p53 signaling

The NF-κB/Rel family of transcription factors mediates numerous cellular responses such
as inflammation, apoptosis, proliferation, differentiation, and tumorigenesis.47 Several in-
vestigators have implicated NF-κB as playing a role in inflammation in SM injury.17,48–50

However, all of these implications have been based on the observations that (1) SM-induced
or SM analog–induced modulation of NF-κB activity in gel shift assays correlates with pro-
tection or inflammatory events, and (2) NF-κB exhibits proinflammatory activity in other
systems.51,52 Collectively, this evidence certainly suggests a role for NF-κB in SM injury;
however, more definitive evidence that NF-κB plays a role specifically in SM-induced cy-
tokine production and inflammation has remained elusive. Another possible role for NF-κB
in SM injury is in cell death. Many of the studies that implicated NF-κB in SM-induced
inflammation also implicated NF-κB in SM-induced cell death for similar reasons (ie, the
observations that modulation of NF-κB activity correlates with protective events and that
NF-κB has antiapoptotic activity in other systems).53–55 However, as with the role pro-
posed for NF-κB in SM-induced inflammation, definitive evidence of a role for NF-κB in
SM-induced cell death has not been reported.

Although the exact role of NF-κB in SM-induced inflammation remains in question,
recent data suggest that another signaling molecule, p38 MAP kinase, plays a critical role in
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SM-induced inflammatory cytokine production.14 p38 MAP kinase is related to the extra-
cellular signal-regulated kinases and stress-activated protein kinases (SAPKs).56,57 Like the
SAPKs, p38 can be activated by various stressors, including heat, UV irradiation, chemical
shock, IL-1, and TNF-α. Once activated, p38 then phosphorylates and activates numerous
molecular targets, including transcription factors that regulate expression of inflammatory
cytokines. Dillman et al.14 investigated the role of p38 MAPK signaling in SM-exposed
normal human epidermal keratinocytes (NHEKs) and observed that SM rapidly induced
p38 phosphorylation (within 15 minutes) in a dose-dependent manner. The upstream kinase
MKK3/MKK6 was also rapidly activated, consistent with the rapid phosphorylation of p38.
Perhaps the most intriguing observation made in this study was that inhibiting p38 substan-
tially and significantly reduced SM-induced inflammatory cytokine production. Treatment
of NHEKs with SB203580, a p38 inhibitor, decreased the SM-induced production of IL-6,
IL-8, and TNF-α by ∼90% and IL-1β by ∼50%. While these findings do not rule out the
involvement of NF-κB in SM-induced inflammatory cytokine production, they do indicate
that p38 may play a more critical role than NF-κB in this regard.

While the role of NF-κB in SM injury has been studied for several years, only recently
has the mechanism of NF-κB activation in SM injury been investigated. Minsavage and
Dillman58 showed that activation of NF-κB by SM was delayed and occurred 2 to 4 hours
after exposure. Higher doses of SM did not induce a more rapid activation of NF-κB.
SM also induced phosphorylation of p90 ribosomal S6 kinase (p90RSK) 1 to 4 hours
postexposure. In the classical scheme of NF-κB activation, a stimulating agent (e.g. TNF-α)
rapidly induces activation of NF-κB.47 However, the observation reported by Minsavage
and Dillman that NF-κB and p90RSK activation is delayed in SM exposure is similar
to the model of nonclassical NF-κB activation reported by others.59 In this nonclassical
model (Fig 1), NF-κB activation is delayed for hours following stimulus, and activation is
thought to result from p90RSK phosphorylation of IκB and/or p65.59–61 Minsavage et al.58

also showed that SM rapidly induced activation of p53 (within 15 minutes) as indicated by
phosphorylation of amino acid residue Ser-15. p53 responds to a variety of genotoxic and
nongenotoxic stressors, especially DNA damaging agents, and plays an important role in
tumor suppression, cell cycle arrest, and apoptosis by transcription-dependent and indepen-
dent mechanisms.62 Caffeic acid phenyl ester (CAPE) is a putative NF-κB-specific inhibitor.
However, Minsavage et al. demonstrated that CAPE inhibited not only both TNF-α-induced
and SM-induced activation of NF-κB but also the phosphorylation of p90RSK and p53. This
suggests that CAPE may not be an NF-κB-specific inhibitor. The observation that CAPE
inhibited the activation of NF-κB, p90RSK, and p53 leaves 3 possible explanations as to
the mode of NF-κB inhibition by CAPE. First, CAPE may have inhibited the nonclassical
SM-induced activation of NF-κB by directly acting on NF-κB. Second, CAPE may have
inhibited the nonclassical SM-induced activation of NF-κB by inhibition of p90RSK. The
third and perhaps most provocative possibility involves p53. CAPE inhibition of p53 activa-
tion occurred several hours before NF-κB was observed to be activated and before NF-κB
inhibition by CAPE. Thus, p53 may be involved in SM-induced activation of NF-κB, and
inhibition of nonclassical SM-induced activation of NF-κB by CAPE may occur via p53.

A role for p53 in SM cutaneous injury was first implicated by Smith et al.63 from the
observation that p53 expression was increased in areas of cell death in SM-exposed pig
skin. Stoppler et al.64 later demonstrated a role for p53 in SM-induced apoptosis of cultured
keratinocytes. Cells were transformed with human papillomavirus-16 (HPV-16) E6 or E7 to
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Figure 1. Model of nonclassical NF-κB activation. A fraction of NF-κB-IκBα complexes shuttle
into (and out of) the nucleus. p53 induces RSK1 activation. RSK1 translocates to the nucleus where
it phosphorylates serine 536 of p65. This decreases the affinity of IκBα for p65, and p50-p65
(NF-κB) can then bind to NF-κB responsive elements. p53 induces NF-κB activation by an Iκ-B
kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. Figure
adapted from Bohuslav et al.59 Used with permission.

inhibit or upregulate p53 expression, respectively. Keratinocytes expressing E6 were similar
to untransformed cells in their sensitivity to SM-induced or TNF-α-induced apoptosis.
However, E7 expressing cells were sensitized to SM-induced and TNF-α-induced apoptosis.
Since E7 expression is accompanied by increased p53 levels, these findings implicate p53 in
the apoptotic response to SM and TNF-α in these cells. These observations were confirmed
by Rosenthal et al.,65 who also found that HPV-16 E7 sensitized keratinocytes to SM-induced
apoptosis. In addition, these authors observed that SM-exposed keratinocytes expressing
E7 also had higher levels of caspase-3 activity and PARP cleavage (PARP is a substrate of
caspase-3) and suggested that the apoptotic response to SM is complex, involving multiple
apoptotic signaling pathways, including p53, caspases, and PARP (Fig 2).

PARP signaling

PARP uses NAD+ as a substrate and catalyzes the addition and polymerization of ADP-
ribose to a variety of nuclear proteins. PARP is induced by DNA strand breaks, and ADP
ribosylation of nuclear proteins has a role in DNA repair and cell recovery following DNA
damage.66 Papirmeister et al.31 showed that SM doses producing only mild injury resulted
in a transient drop in NAD+ levels that returned to normal level by 18 hours postexposure.
However, with moderate and high vesicating doses of SM, PARP activation occurred to such
a degree that cellular NAD+ pools were depleted. From these observations, Papirmeister
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Figure 2. Molecules and pathways implicated in sulfur mustard (SM)–induced apoptosis. All
molecules in red have been demonstrated to be activated or upregulated in SM exposure. Molecules
in white have been demonstrated to play a fundamental role in apoptosis in many other systems but
have not yet been directly implicated in SM injury. SM-induced DNA damage is believed to lead to
p53 activation. SM exposure also induces a rise in the intracellular concentration of Ca2+, though
the mechanism of Ca2+ release and precise insult leading to the release remain unclear. However,
both p53 and Ca2+ signaling appear to lead to the activation of intrinsic mitochondrial pathways of
apoptosis. While SM-induced DNA damage does induce PARP activation, the role of PARP in apop-
tosis may be cell-type dependent and the exact pathway remains to be demonstrated. SM exposure
has also been demonstrated to lead to the upregulation of both Fas and FasL activating the extrinsic
pathway of apoptosis. However, the mechanism(s) of upregulation of Fas and FasL in SM injury is
unknown.

et al. proposed their mechanism of SM-induced PARP-mediated cell death leading to blister
formation. Studies with other DNA-damaging agents supported this model of cell death by
PARP-mediated depletion of NAD+ induced by DNA damage.67–69 Although PARP can
signal for cell death by depletion of intracellular pools of NAD+ or ATP, this may not be
the only mechanism by which PARP activation can signal for cell death. Recent studies
indicate that the PARP product poly(ADP-ribose) (PAR) alone can signal for cell death,
and degradation of PAR can protect against cell death.70,71 This may account, at least in
part, for the observations of Mol et al.72 and Yourick et al.,73 who reported that reduction of
skin damage by treatment with PARP inhibitors did not correlate with the NAD+ content
of the skin. Regardless of the mechanism of PARP-induced cell death (NAD+ depletion
and/or PAR synthesis), PARP inhibitors provided only a marginal degree of protection
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against cell death in culture and did not significantly ameliorate tissue damage.72,73 Other
investigations that implicate PARP in SM-induced (or other agent-induced) cell death also
report that protection by PARP inhibitors is limited.74–76 Furthermore, recent findings by
Haince et al.77 bring into question the therapeutic value of PARP inhibitors for SM injury.
They propose a model of DNA damage response in which PAR molecules attached to
PARP recruit ataxia-telangiectasia mutated to sites of DNA damage. Their results showed
that inhibition of PAR synthesis by PARP inhibitors and PARP knockout significantly
reduced phosphorylation of proteins involved in the response to and repair of DNA damage,
including p53, SMC1, and H2AX histone, suggesting that the ability of cells to respond to
DNA damage is compromised in the absence of PARP activity. PARP inhibitors and PARP
knockout did not protect cells, but actually sensitized cells to DNA damage–induced cell
death. Their work suggests that PARP inhibitors compromise the ability of cells to respond
to and repair DNA damage and may be detrimental as a therapeutic approach to treat injuries
caused by DNA damaging agents such as SM.

PARP has also been implicated in roles in SM injury other than mediating cell death.
Hinshaw et al.78 proposed that the ATP-dependent disruption of microfilament architecture
they observed following SM exposure was due to PARP-mediated NAD+ and ATP depletion.
Disrupted microfilament architecture altered keratinocyte morphology and increased the
permeability of endothelial cell monolayers. They also noted that keratinocyte cell adherence
was more sensitive to SM exposure than endothelial cell adherence. They suggested that
these SM-induced PARP-mediated phenotypic changes might account for the capillary
leakage and loss of cell adherence observed in SM cutaneous injury. In addition to altering
microfilament architecture, PARP has been implicated in determining the mode of cell death
in SM injury. Rosenthal et al.65 showed that PARP conferred a reduction in apoptotic markers
in SM-exposed fibroblasts. However, this reduction of apoptotic markers was due to shifting
the mode of death from apoptosis to necrosis by PARP.79 SM-exposed fibroblasts from PARP
knockout mice expressed increased apoptotic markers relative to fibroblasts from normal
mice. There was also a dose-dependent increase of necrotic markers in fibroblasts from
normal mice but not in fibroblasts from PARP knockout mice. In contrast to fibroblasts,
keratinocytes from both normal and PARP knockout mice exhibited markers of apoptosis
when exposed to SM. Thus, PARP induced a shift in the mode of SM-induced cell death
away from an apoptotic phenotype to a more necrotic phenotype in fibroblasts, but not in
keratinocytes. Rosenthal et al. noted the work by Meier et al.76 in which PARP inhibitors
reduced SM-induced necrosis in lymphocytes, but not markers of apoptosis, and suggested
that PARP may induce a shift toward necrosis in SM-exposed lymphocytes similar to their
observations in fibroblasts.

Calcium signaling

Several studies implicate calmodulin and rises in intracellular Ca2+ levels in SM
toxicity,80–84 and these are perhaps the two most well-studied signaling molecules induced
by SM exposure. Alterations in Ca2+ homeostasis are thought to play a role in the cyto-
toxicity of some toxicants,85–89 and Ca2+ and calmodulin have been shown to play a role
in apoptosis.83,90–92 Two mechanisms have been proposed for the rise in Ca2+ levels in
apoptosis. The first mechanism involves protein kinase signaling pathways that lead to
the activation of phospholipase C (PLC) and the generation of inositol triphosphate (IP3),
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which acts on Ca2+ channels to release Ca2+ from intracellular stores.86,93–95 The second
mechanism involves oxidative stress in which reactive oxygen species generated by toxicant
exposure react with Ca2+ transport channels in the endoplasmic reticulum, mitochondria,
and cell membrane. These reactions damage the Ca2+ transport channels, which results in
an influx of Ca2+ into the cytosol.93,96 The mechanism(s) underlying the SM-induced rise
in intracellular Ca2+ has not been fully elucidated; however, results from studies thus far
suggest two possible mechanisms that are similar to those described above. Ca2+ levels have
been shown to rise following oxidative or electrophilic stress because cellular protein thiol
levels are depleted.97,98 Since SM has been shown to deplete glutathione levels,99 this is
one possible mechanism for the rise in intracellular Ca2+ in SM-exposed cells. The second
possible mechanism involves phospholipase activation. There are no data demonstrating
that SM induces the generation of IP3 and subsequent Ca2+ release. However, SM expo-
sure results in the activation of phospholipase D in cultured keratinocytes,100 and in other
systems, phospholipase D is believed to elevate intracellular Ca2+ levels by activating the
Src/PLCγ pathway.101

The effect of SM on intracellular Ca2+ levels has been studied in both fibroblasts80 and
keratinocytes.81 In B77 fibroblasts, SM induced a dose-dependent rise in intracellular Ca2+

levels that occurred within 5 to 10 minutes of exposure. SM also induced a rise in intracellular
Ca2+ levels in keratinocytes, but the response was more delayed. No rise in Ca2+ was
observed in the first 20 minutes after exposure, but a rise in Ca2+ was observed at later time
points of 3 to 24 hours. SM also affected Ca2+ signaling in response to extracellular signals
in both cell types, but with different kinetics and with different dynamics. In fibroblasts,
SM completely inhibited Ca2+ signaling responses to serum within about 40 minutes of
exposure. In contrast, the rise of intracellular Ca2+ in response to histamine and ATP was
attenuated in SM-exposed keratinocytes in a dose-dependent and time-dependent manner,
but was not completely inhibited. However, comparison of all the data from the two studies
is difficult because of differences in the assays. A slightly higher dose of SM (1 mM) was
used with fibroblasts than the highest dose of SM (0.8 mM) used with keratinocytes. This
may account for some of the differences in the responses, but these doses are similar, and
inherent differences in the response of fibroblasts versus keratinocytes would seem to be a
more likely explanation. Comparisons of the responses with extracellular signals are much
more difficult because of the very different extracellular signals used (serum vs ATP and
histamine). Additional studies, using identical SM doses, extracellular signals, and culture
conditions, are necessary to establish whether differences in the responses are inherent to
the two cell types. In spite of the differences in the assays, some important implications
can be drawn from these studies. First, both studies show that SM affected the ability
of cells to respond to extracellular signals. This implies that SM-induced cell death may
result, at least in part, from an inability to respond to survival and growth signals present
in the extracellular milieu. Second, both studies show that the rise in intracellular Ca2+ was
moderate (<2-fold). Both authors suggested that the modest increases in intracellular Ca2+

levels induced by SM were more likely to cause aberrant physiology rather than toxicity,
since intracellular Ca2+-mediated toxicity requires much higher levels.80,81

The suggestion by Hua et al.80 and Mol and Smith81 that SM-induced changes in Ca2+

levels alter cell physiology but do not cause cellular toxicity has been supported by the work
of Rosenthal et al.65,83 They reported that keratinocytes exposed to SM expressed markers
of terminal differentiation (induction of K1/K10, crosslinking of involucrin, suppression of
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fibronectin) and apoptosis (induction of p53, suppression of Bcl-2, activation of caspase-3,
PARP cleavage, induction of DNA fragmentation).65,83 The Ca2+ ionophore BAPTA-AM,
the calmodulin inhibitor W7, and calmodulin antisense RNA suppressed these markers.
This suggests a role for Ca2+ and calmodulin in the SM-induced terminal differentiation
and apoptotic processes. These observations are consistent with other studies on the role of
Ca2+ in terminal differentiation of keratinocytes,102–107 and the role of Ca2+ and calmodulin
in apoptosis.92,108 Rosenthal et al.83 suggested that the involvement of Ca2+, calmodulin,
p53, Bcl-2, PARP, and caspase-3 indicates that a complex signaling network is involved in
SM-induced apoptosis. These findings also demonstrate that two potential mechanisms are
involved in SM-induced keratinocyte death: apoptosis and terminal differentiation.

More recent work by Simbulan-Rosenthal et al.84 has further elucidated the role of
calmodulin in SM-induced apoptosis. Calmodulin antisense RNA was shown to suppress the
SM-induced activation of caspase-3, -6, -7, -8, and -9 as well as the proteolytic processing of
PARP. However, calmodulin antisense RNA did not suppress caspase-3 activation induced
by a Fas antibody agonist, suggesting that calmodulin is acting on other apoptotic path-
ways in SM exposure. Furthermore, calmodulin and calcineurin inhibitors both suppressed
SM-induced caspase-3 activity, but calmodulin-dependent protein kinase II (CaM-kinase
II) inhibitors did not. Calmodulin has been shown to modulate apoptosis via CaM-kinase
II109,110 and via calcineurin.92 However, these results suggest that CaM-kinase II does not
play a role in SM-induced apoptosis. Calcineurin has been shown to dephosphorylate and
activate BAD, a proapoptotic protein that, when dephosphorylated, interacts with the an-
tiapoptotic proteins Bcl-2 or Bcl-XL to induce apoptosis.111–113 Rosenthal et al. showed
that BAD was completely dephosphorylated 24 hours after SM exposure, and inhibition of
calmodulin by antisense RNA or W13 (a calmodulin inhibitor) inhibited the SM-induced de-
phosphorylation of BAD and attenuated nuclear fragmentation. Rosenthal et al. also suggest
that SM induces apoptosis in keratinocytes by a calmodulin-BAD mitochondrial pathway.
However, they further suggest that both death receptor (Fas) and mitochondrial apoptotic
pathways are involved in SM-induced apoptosis, given that they also observed processing
and activation of caspase-8 and -9, which were only partially blocked by calmodulin 1 anti-
sense RNA. The involvement of both Fas-mediated and mitochondrial pathways of apoptosis
in the response to SM was also reported in earlier work by this group.114 The intrinsic and
extrinsic pathways of apoptosis implicated in SM injury are summarized in Figure 2.

Fas signaling

In their earlier study implicating Fas and mitochondrial apoptotic pathways in SM injury,
Rosenthal et al.114 investigated Fas apoptotic signaling. SM induced the upregulation of
Fas and FasL in keratinocytes as well as processing of procaspase-3, -7, -8 and -9. SM-
induced apoptosis and caspase-3 activity was also diminished by Fas-blocking antibody.
The observation of caspase-8 and -9 activation suggests that both death receptor and mi-
tochondrial apoptotic pathways are involved in SM-induced cell death. Also in this study,
they further investigated the role of Fas using keratinocytes from Fas knockout mouse pups
and keratinocytes transformed by HPV-16 E6/E7 that stably expressed a dominant-negative,
Fas-activated death domain (FADD-DN). FADD-DN suppressed SM-induced DNA frag-
mentation as well as caspase-3, -6, and -8 processing and/or activity. FADD-DN was also
shown to partially diminish SM-induced vesication of grafts on nude mice. Keratinocytes
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from Fas knockout pups showed a reduction in SM-induced caspase-3 activation and DNA
strand breaks relative to controls. Rosenthal et al. noted that markers of apoptosis were
only diminished by FADD-DN and Fas knockout, consistent with the involvement of other
pathways (mitochondrial pathways) in SM-induced apoptosis.

FUTURE DIRECTIONS

Progress has been made in elucidating the signaling pathways involved in SM toxicity. This
is especially true of the investigations on the role of Ca2+ and calmodulin in SM injury
and some of the more recent studies with other signaling molecules. However, the proposed
roles for many of the molecular events in SM injury remain mostly theoretical, as causative
or direct relationships between them and specific aspects of SM injury have yet to be exper-
imentally established. This is critical to the rational development of vesicant therapeutics.
Perhaps, a foundational key connection that needs to be elucidated is the relationship be-
tween SM-induced DNA damage and the ensuing signaling events that lead to clinical
injury. Also, while defining the roles of downstream signaling molecules in SM injury is
obviously important, determining how crosstalk between these pathways affects the cellular
response and how SM exposure dose affects all of these responses and relationships is likely
to be very important as well. For example, is there a direct causative link between DNA
damage and inflammation or are these pathways activated in parallel by distinctly different
mechanisms induced by SM exposure? What is the relationship between NF-κB and p38 in
the production of inflammatory cytokines? What are the transcription factors downstream
of p38 that activate expression of inflammatory cytokines? Although the connection be-
tween DNA damage and cell death is well studied with model genotoxic agents (eg, UV
irradiation), this connection has not been completely established for SM toxicity. What is
the relationship between p53, NF-κB, and apoptosis? What are the signals that activate the
p53 response? What are the downstream targets of p53 and NF-κB and how are they related
to the process of SM-induced apoptosis? Is it possible to allow injured cells to die and yet
decrease the robust inflammatory response? Finally, what is the relationship between each
of these signaling pathways and the formation of large bolus blisters that are the hallmark
of cutaneous SM exposure? Answers to these key questions are vital to increasing our
understanding of SM toxicity and accelerating the development of vesicant therapeutics.
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